310 research outputs found

    Ethnic differences in success at application for consultant posts among United Kingdom physicians from 2011 to 2019: a retrospective cross-sectional observational study

    Get PDF
    OBJECTIVES: To identify associations between success following application for consultant physician posts and demographic factors. DESIGN: Logistic regression analysis of nationwide survey data. SETTING: United Kingdom (UK) physicians with a recent certificate of completion of training (CCT). PARTICIPANTS: All UK trainee physicians who received a CCT between 2010 and 2019 were surveyed. Respondents were excluded if they had not applied for a consultant post or if application data were incomplete. MAIN OUTCOME MEASURES: The primary outcome measure was success over the entire consultant application process, i.e. shortlisted and offered the post following the first application. Secondary outcomes were: shortlisted following first application and offered a consultant post at first interview. RESULTS: From 7037 CCT holders surveyed, 50.7% responded. While 1198 (59.7%) respondents were white, 760 (37.9%) were from minority ethnic groups and 50 (3.5%) were of unknown ethnicity. Primary medical qualification (PMQ) country was the UK in 75.3% (n = 1512). On multivariable logistic regression analysis the independent negative associations with success were: minority ethnicity (odds ratio [OR] 0.55, 95% confidence interval [CI] 0.43-0.71); p < 0.001) vs. white; PMQ from Europe (OR 0.47, 95% CI 0.28-0.79; p = 0.004) or Asia (OR 0.68, 95% CI 0.49-0.96; p = 0.027) vs. UK PMQ; year of CCT 2012 (OR 0.40, 95% CI 0.24-0.68; p = 0.001), 2013 (OR 0.39, 95% CI 0.23-0.65; p < 0.001), and 2014 (OR 0.26, 95% CI 0.15-0.43; p < 0.001) vs. 2019. Specialties associated with lower success rates included Cardiology, Endocrinology, Genitourinary medicine, Palliative care, Renal and Respiratory, compared to Acute medicine. CONCLUSIONS: Minority ethnic group candidates for consultant physician posts had lower success rates compared to white candidates after correction for important variables including specialty, time from and country of PMQ. This finding requires further evaluation to identify the causes for this variation

    Neural cytoskeleton capabilities for learning and memory

    Get PDF
    This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?

    Get PDF
    Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Cigarette smoking, health status, socio-economic status and access to health care in diabetes mellitus: a cross-sectional survey

    Get PDF
    BACKGROUND: In diabetes mellitus, cigarette smoking is associated with increased risk of cardiovascular mortality and microvascular complications. We evaluated cigarette smoking in people with diabetes mellitus in a socio-economically deprived area. METHODS: We carried out a cross-sectional survey of people registered with diabetes mellitus at 29 general practices in inner London. Responses were analysed for 1,899 (64%) respondents out of 2,983 eligible. RESULTS: There were 1,899 respondents of whom 968 (51%) had never smoked, 296 (16%) were current smokers and 582 (31%) were ex-smokers. Smoking was more frequent in white Europeans (men 22%, women 20%), than in African Caribbeans (men 15%, women 10%) or Africans (men 8%, women 2%). Smoking prevalence decreased with age. Smokers were more likely to be living in rented accommodation (odds ratio, OR 2.02, 95% confidence interval 1.48 to 2.74). After adjusting for confounding, current smokers had lower SF-36 scores than subjects who had never smoked (mean difference in physical functioning score -5.6, 95% confidence interval -10.0 to -1.2; general health -6.1, -9.7 to -2.5). Current smokers were less likely to have attended a hospital diabetic clinic in the last year (OR 0.59, 0.44 to 0.79), and their hypertension was less likely to be treated (OR 0.47, 0.30 to 0.74). CONCLUSIONS: Compared with non-smokers, smokers had lower socio-economic status and worse health status, but were less likely to be referred to hospital or treated for their hypertension. People with diabetes who smoke can be regarded as a vulnerable group who need more intensive support and treatment

    The transmission spectrum of Earth through lunar eclipse observations

    Full text link
    Of the 342 planets discovered so far orbiting other stars, 58 "transit" the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the fingerprints of the Earth's ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum.Comment: Published in Nature, 11 July 2009. This file also contains the on-line materia

    Facilitators and Barriers to Uptake of an Extended Seasonal Malaria Chemoprevention Programme in Ghana: A Qualitative Study of Caregivers and Community Health Workers

    Get PDF
    BACKGROUND: Seasonal Malaria Chemoprevention (SMC) is currently recommended for children under five in areas where malaria transmission is highly seasonal. We explored children's caregivers' and community health workers' (CHWs) responses to an extended 5-month SMC programme. METHODS: Thirteen in-depth interviews and eight focus group discussions explored optimal and suboptimal 'uptake' of SMC to examine facilitators and barriers to caregivers' uptake. RESULTS: There did not appear to be major differences between caregivers of children with optimal and sub-optimal SMC uptake in terms of their knowledge of malaria, their perceptions of the effect of SMC on a child's health, nor their understanding of chemoprevention. Caregivers experienced difficulty in prioritising SMC for well children, perceiving medication being for treatment rather than prevention. Prior to the study, caregivers had become accustomed to rapid diagnostic testing (RDT) for malaria, and therefore blood testing for malaria during the baseline survey at the start of the SMC programme may have positively influenced uptake. Facilitators of uptake included caregivers' trust in and respect for administrators of SMC (including CHWs), access to medication and supportive (family) networks. Barriers to uptake related to poor communication of timings of community gatherings, travel distances, absence during SMC home deliveries, and limited demand for SMC due to lack of previous experience. Future delivery of SMC by trained CHWs would be acceptable to caregivers. CONCLUSION: A combination of caregivers' physical access to SMC medication, the drug regimen, trust in the medical profession and perceived norms around malaria prevention all likely influenced caregivers' level of uptake. SMC programmes need to consider: 1) developing supportive, accessible and flexible modes of drug administration including home delivery and village community kiosks; 2) improving demand for preventive medication including the harnessing of learnt trust; and 3) developing community-based networks for users to support optimal uptake of SMC
    corecore